Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.592
Filtrar
1.
Malar J ; 23(1): 106, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632607

RESUMO

BACKGROUND: To gain a deeper understanding of protective immunity against relapsing malaria, this study examined sporozoite-specific T cell responses induced by a chemoprophylaxis with sporozoite (CPS) immunization in a relapsing Plasmodium cynomolgi rhesus macaque model. METHODS: The animals received three CPS immunizations with P. cynomolgi sporozoites, administered by mosquito bite, while under two anti-malarial drug regimens. Group 1 (n = 6) received artesunate/chloroquine (AS/CQ) followed by a radical cure with CQ plus primaquine (PQ). Group 2 (n = 6) received atovaquone-proguanil (AP) followed by PQ. After the final immunization, the animals were challenged with intravenous injection of 104 P. cynomolgi sporozoites, the dose that induced reliable infection and relapse rate. These animals, along with control animals (n = 6), were monitored for primary infection and subsequent relapses. Immunogenicity blood draws were done after each of the three CPS session, before and after the challenge, with liver, spleen and bone marrow sampling and analysis done after the challenge. RESULTS: Group 2 animals demonstrated superior protection, with two achieving protection and two experiencing partial protection, while only one animal in group 1 had partial protection. These animals displayed high sporozoite-specific IFN-γ T cell responses in the liver, spleen, and bone marrow after the challenge with one protected animal having the highest frequency of IFN-γ+ CD8+, IFN-γ+ CD4+, and IFN-γ+ γδ T cells in the liver. Partially protected animals also demonstrated a relatively high frequency of IFN-γ+ CD8+, IFN-γ+ CD4+, and IFN-γ+ γδ T cells in the liver. It is important to highlight that the second animal in group 2, which experienced protection, exhibited deficient sporozoite-specific T cell responses in the liver while displaying average to high T cell responses in the spleen and bone marrow. CONCLUSIONS: This research supports the notion that local liver T cell immunity plays a crucial role in defending against liver-stage infection. Nevertheless, there is an instance where protection occurs independently of T cell responses in the liver, suggesting the involvement of the liver's innate immunity. The relapsing P. cynomolgi rhesus macaque model holds promise for informing the development of vaccines against relapsing P. vivax.


Assuntos
Atovaquona , Vacinas Antimaláricas , Plasmodium cynomolgi , Proguanil , Animais , Primaquina/uso terapêutico , Esporozoítos , Macaca mulatta , Imunização , Quimioprevenção , Linfócitos T CD8-Positivos , Combinação de Medicamentos
2.
Malar J ; 23(1): 111, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641838

RESUMO

BACKGROUND: Sporozoites (SPZ), the infective form of Plasmodium falciparum malaria, can be inoculated into the human host skin by Anopheline mosquitoes. These SPZ migrate at approximately 1 µm/s to find a blood vessel and travel to the liver where they infect hepatocytes and multiply. In the skin they are still low in number (50-100 SPZ) and vulnerable to immune attack by antibodies and skin macrophages. This is why whole SPZ and SPZ proteins are used as the basis for most malaria vaccines currently deployed and undergoing late clinical testing. Mosquitoes typically inoculate SPZ into a human host between 14 and 25 days after their previous infective blood meal. However, it is unknown whether residing time within the mosquito affects SPZ condition, infectivity or immunogenicity. This study aimed to unravel how the age of P. falciparum SPZ in salivary glands (14, 17, or 20 days post blood meal) affects their infectivity and the ensuing immune responses. METHODS: SPZ numbers, viability by live/dead staining, motility using dedicated sporozoite motility orienting and organizing tool software (SMOOT), and infectivity of HC-04.j7 liver cells at 14, 17 and 20 days after mosquito feeding have been investigated. In vitro co-culture assays with SPZ stimulated monocyte-derived macrophages (MoMɸ) and CD8+ T-cells, analysed by flow cytometry, were used to investigate immune responses. RESULTS: SPZ age did not result in different SPZ numbers or viability. However, a markedly different motility pattern, whereby motility decreased from 89% at day 14 to 80% at day 17 and 71% at day 20 was observed (p ≤ 0.0001). Similarly, infectivity of day 20 SPZ dropped to ~ 50% compared with day 14 SPZ (p = 0.004). MoMɸ were better able to take up day 14 SPZ than day 20 SPZ (from 7.6% to 4.1%, p = 0.03) and displayed an increased expression of pro-inflammatory CD80, IL-6 (p = 0.005), regulatory markers PDL1 (p = 0.02), IL-10 (p = 0.009) and cytokines upon phagocytosis of younger SPZ. Interestingly, co-culture of these cells with CD8+ T-cells revealed a decreased expression of activation marker CD137 and cytokine IFNγ compared to their day 20 counterparts. These findings suggest that older (day 17-20) P. falciparum SPZ are less infectious and have decreased immune regulatory potential. CONCLUSION: Overall, this data is a first step in enhancing the understanding of how mosquito residing time affects P. falciparum SPZ and could impact the understanding of the P. falciparum infectious reservoir and the potency of whole SPZ vaccines.


Assuntos
Culicidae , Vacinas Antimaláricas , Malária Falciparum , Animais , Humanos , Esporozoítos , Linfócitos T CD8-Positivos , Envelhecimento , Plasmodium falciparum
3.
EMBO Mol Med ; 16(4): 723-754, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38514791

RESUMO

Vaccination with infectious Plasmodium falciparum (Pf) sporozoites (SPZ) administered with antimalarial drugs (PfSPZ-CVac), confers superior sterilizing protection against infection when compared to vaccination with replication-deficient, radiation-attenuated PfSPZ. However, the requirement for drug administration constitutes a major limitation for PfSPZ-CVac. To obviate this limitation, we generated late liver stage-arresting replication competent (LARC) parasites by deletion of the Mei2 and LINUP genes (mei2-/linup- or LARC2). We show that Plasmodium yoelii (Py) LARC2 sporozoites did not cause breakthrough blood stage infections and engendered durable sterilizing immunity against various infectious sporozoite challenges in diverse strains of mice. We next genetically engineered a PfLARC2 parasite strain that was devoid of extraneous DNA and produced cryopreserved PfSPZ-LARC2. PfSPZ-LARC2 liver stages replicated robustly in liver-humanized mice but displayed severe defects in late liver stage differentiation and did not form liver stage merozoites. This resulted in complete abrogation of parasite transition to viable blood stage infection. Therefore, PfSPZ-LARC2 is the next-generation vaccine strain expected to unite the safety profile of radiation-attenuated PfSPZ with the superior protective efficacy of PfSPZ-CVac.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Parasitos , Animais , Camundongos , Plasmodium falciparum/genética , Malária Falciparum/prevenção & controle , Deleção de Genes , Vacinas Antimaláricas/genética , Vacinas Atenuadas/genética , Esporozoítos/genética
4.
Malar J ; 23(1): 81, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493098

RESUMO

BACKGROUND: Vector surveillance is among the World Health Organization global vector control response (2017-2030) pillars. Human landing catches are a gold standard but difficult to implement and potentially expose collectors to malaria infection. Other methods like light traps, pyrethrum spray catches and aspiration are less expensive and less risky to collectors. METHODS: Three mosquito sampling methods (UV light traps, CDC light traps and Prokopack aspiration) were evaluated against human landing catches (HLC) in two villages of Rarieda sub-county, Siaya County, Kenya. UV-LTs, CDC-LTs and HLCs were conducted hourly between 17:00 and 07:00. Aspiration was done indoors and outdoors between 07:00 and 11:00 a.m. Analyses of mosquito densities, species abundance and sporozoite infectivity were performed across all sampling methods. Species identification PCR and ELISAs were done for Anopheles gambiae and Anopheles funestus complexes and data analysis was done in R. RESULTS: Anopheles mosquitoes sampled from 608 trapping efforts were 5,370 constituting 70.3% Anopheles funestus sensu lato (s.l.), 19.7% Anopheles coustani and 7.2% An. gambiae s.l. 93.8% of An. funestus s.l. were An. funestus sensu stricto (s.s.) and 97.8% of An. gambiae s.l. were Anopheles arabiensis. Only An. funestus were sporozoite positive with 3.1% infection prevalence. Indoors, aspiration captured higher An. funestus (mean = 6.74; RR = 8.83, P < 0.001) then UV-LT (mean = 3.70; RR = 3.97, P < 0.001) and CDC-LT (mean = 1.74; RR = 1.89, P = 0.03) compared to HLC. UV-LT and CDC-LT indoors captured averagely 0.18 An. arabiensis RR = 5.75, P = 0.028 and RR = 5.87, P = 0.028 respectively. Outdoors, UV-LT collected significantly higher Anopheles mosquitoes compared to HLC (An. funestus: RR = 5.18, P < 0.001; An. arabiensis: RR = 15.64, P = 0.009; An. coustani: RR = 11.65, P < 0.001). Anopheles funestus hourly biting indoors in UV-LT and CDC-LT indicated different peaks compared to HLC. CONCLUSIONS: Anopheles funestus remains the predominant mosquito species. More mosquitoes were collected using aspiration, CDC-LTs and UV-LTs indoors and UV-LTs and CD-LTs outdoors compared to HLCs. UV-LTs collected more mosquitoes than CDC-LTs. The varied trends observed at different times of the night suggest that these methods collect mosquitoes with diverse activities and care must be taken when interpreting the results.


Assuntos
Anopheles , Malária , Animais , Humanos , Anopheles/fisiologia , Quênia/epidemiologia , Mosquitos Vetores/fisiologia , Comportamento Alimentar , Esporozoítos , Controle de Mosquitos/métodos
5.
Malar J ; 23(1): 72, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468292

RESUMO

BACKGROUND: Recently, bacterial endosymbiont, including Wolbachia and Microsporidia were found to limit the infection of Anopheles mosquitoes with Plasmodium falciparum. This study aimed to investigate the natural presence of key transmission-blocking endosymbionts in Anopheles gambiae and Anopheles coluzzii in Southern Benin. METHODS: The present study was conducted in seven communes (Cotonou, Porto-Novo, Aguégués, Ifangni, Pobè Athiémé, and Grand-Popo) of Southern Benin. Anopheles were collected using indoor/outdoor Human Landing Catches (HLCs) and Pyrethrum Spray Catches (PSCs). Following morphological identification, PCR was used to identify An. gambiae sensu lato (s.l.) to species level and to screen for the presence of both Wolbachia and Microsporidia. Plasmodium falciparum sporozoite infection was also assessed using ELISA. RESULTS: Overall, species composition in An. gambiae s.l. was 53.7% An. coluzzii, while the remainder was An. gambiae sensu stricto (s.s.). Combined data of the two sampling techniques revealed a mean infection prevalence with Wolbachia of 5.1% (95% CI 0.90-18.6) and 1.3% (95% CI 0.07-7.8) in An. gambiae s.s. and An. coluzzii, respectively. The mean infection prevalence with Microsporidia was 41.0% (95% CI 25.9-57.8) for An. gambiae s.s. and 57.0% (95% CI 45.4-67.9) for An. coluzzii. Wolbachia was only observed in Ifangni, Pobè, and Cotonou, while Microsporidia was detected in all study communes. Aggregated data for HLCs and PSCs showed a sporozoite rate (SR) of 0.80% (95% CI 0.09-2.87) and 0.69% (95% CI 0.09-2.87) for An. gambiae and An. coluzzii, respectively, with a mean of 0.74% (95% CI 0.20-1.90). Of the four individual mosquitoes which harboured P. falciparum, none were also infected with Wolbachia and one contained Microsporidia. CONCLUSIONS: The present study is the first report of natural infections of field-collected An. gambiae s.l. populations from Benin with Wolbachia and Microsporidia. Sustained efforts should be made to widen the spectrum of bacteria identified in mosquitoes, with the potential to develop endosymbiont-based control tools; such interventions could be the game-changer in the control of malaria and arboviral disease transmission.


Assuntos
Anopheles , Malária Falciparum , Piretrinas , Wolbachia , Animais , Humanos , Benin/epidemiologia , Estudos Transversais , Mosquitos Vetores , Malária Falciparum/epidemiologia , Esporozoítos
6.
Parasit Vectors ; 17(1): 146, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504274

RESUMO

BACKGROUND: Cryptosporidium parvum is an apicomplexan zoonotic parasite causing the diarrheal illness cryptosporidiosis in humans and animals. To invade the host intestinal epithelial cells, parasitic proteins expressed on the surface of sporozoites interact with host cells to facilitate the formation of parasitophorous vacuole for the parasite to reside and develop. The gp40 of C. parvum, named Cpgp40 and located on the surface of sporozoites, was proven to participate in the process of host cell invasion. METHODS: We utilized the purified Cpgp40 as a bait to obtain host cell proteins interacting with Cpgp40 through the glutathione S-transferase (GST) pull-down method. In vitro analysis, through bimolecular fluorescence complementation assay (BiFC) and coimmunoprecipitation (Co-IP), confirmed the solid interaction between Cpgp40 and ENO1. In addition, by using protein mutation and parasite infection rate analysis, it was demonstrated that ENO1 plays an important role in the C. parvum invasion of HCT-8 cells. RESULTS: To illustrate the functional activity of Cpgp40 interacting with host cells, we identified the alpha-enolase protein (ENO1) from HCT-8 cells, which showed direct interaction with Cpgp40. The mRNA level of ENO1 gene was significantly decreased at 3 and 24 h after C. parvum infection. Antibodies and siRNA specific to ENO1 showed the ability to neutralize C. parvum infection in vitro, which indicated the participation of ENO1 during the parasite invasion of HCT-8 cells. In addition, we further demonstrated that ENO1 protein was involved in the regulation of cytoplasmic matrix of HCT-8 cells during C. parvum invasion. Functional study of the protein mutation illustrated that ENO1 was also required for the endogenous development of C. parvum. CONCLUSIONS: In this study, we utilized the purified Cpgp40 as a bait to obtain host cell proteins ENO1 interacting with Cpgp40. Functional studies illustrated that the host cell protein ENO1 was involved in the regulation of tight junction and adherent junction proteins during C. parvum invasion and was required for endogenous development of C. parvum.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Humanos , Animais , Cryptosporidium parvum/genética , Criptosporidiose/parasitologia , Esporozoítos/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Membrana/metabolismo , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/metabolismo , Proteínas de Ligação a DNA/metabolismo , Biomarcadores Tumorais/metabolismo , Proteínas Supressoras de Tumor/metabolismo
7.
Elife ; 122024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517746

RESUMO

It is currently unknown whether all Plasmodium falciparum-infected mosquitoes are equally infectious. We assessed sporogonic development using cultured gametocytes in the Netherlands and naturally circulating strains in Burkina Faso. We quantified the number of sporozoites expelled into artificial skin in relation to intact oocysts, ruptured oocysts, and residual salivary gland sporozoites. In laboratory conditions, higher total sporozoite burden was associated with shorter duration of sporogony (p<0.001). Overall, 53% (116/216) of infected Anopheles stephensi mosquitoes expelled sporozoites into artificial skin with a median of 136 expelled sporozoites (interquartile range [IQR], 34-501). There was a strong positive correlation between ruptured oocyst number and salivary gland sporozoite load (ρ = 0.8; p<0.0001) and a weaker positive correlation between salivary gland sporozoite load and number of sporozoites expelled (ρ = 0.35; p=0.0002). In Burkina Faso, Anopheles coluzzii mosquitoes were infected by natural gametocyte carriers. Among salivary gland sporozoite positive mosquitoes, 89% (33/37) expelled sporozoites with a median of 1035 expelled sporozoites (IQR, 171-2969). Again, we observed a strong correlation between ruptured oocyst number and salivary gland sporozoite load (ρ = 0.9; p<0.0001) and a positive correlation between salivary gland sporozoite load and the number of sporozoites expelled (ρ = 0.7; p<0.0001). Several mosquitoes expelled multiple parasite clones during probing. Whilst sporozoite expelling was regularly observed from mosquitoes with low infection burdens, our findings indicate that mosquito infection burden is positively associated with the number of expelled sporozoites. Future work is required to determine the direct implications of these findings for transmission potential.


Assuntos
Anopheles , Malária Falciparum , Animais , Humanos , Anopheles/parasitologia , Esporozoítos , Oocistos , Plasmodium falciparum
8.
Parasit Vectors ; 17(1): 53, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321572

RESUMO

BACKGROUND: Understanding the clustering of infections for persistent malaria transmission is critical to determining how and where to target specific interventions. This study aimed to determine the density, blood meal sources and malaria transmission risk of anopheline vectors by targeting malaria index cases, their neighboring households and control villages in Arjo-Didessa, southwestern Ethiopia. METHODS: An entomological study was conducted concurrently with a reactive case detection (RCD) study from November 2019 to October 2021 in Arjo Didessa and the surrounding vicinity, southwestern Ethiopia. Anopheline mosquitoes were collected indoors and outdoors in index case households and their surrounding households (neighboring households), as well as in control households, using pyrethrum spray cache (PSC) and U.S. Centers for Disease Control and Prevention (CDC) light traps. Adult mosquitoes were morphologically identified, and speciation in the Anopheles gambiae complex was done by PCR. Mosquito Plasmodium infections and host blood meal sources were detected by circumsporozoite protein enzyme-linked immunosorbent assay (CSP-ELISA) and cytochrome b-based blood meal PCR, respectively. RESULTS: Among the 770 anopheline mosquitoes collected, An. gambiae sensu lato (A. gambiae s.l.) was the predominant species, accounting for 87.1% (n = 671/770) of the catch, followed by the Anopheles coustani complex and Anopheles pharoensis, which accounted for 12.6% (n = 97/770) and 0.26% (n = 2/770) of the catch, respectively. From the sub-samples of An. gambiae s.l.analyzed with PCR, An. arabiensis and Anopheles amharicus were identified. The overall mean density of mosquitoes was 1.26 mosquitoes per trap per night using the CDC light traps. Outdoor mosquito density was significantly higher than indoor mosquito density in the index and neighboring households (P = 0.0001). The human blood index (HBI) and bovine blood index (BBI) of An. arabiensis were 20.8% (n = 34/168) and 24.0% (n = 41/168), respectively. The overall Plasmodium sporozoite infection rate of anophelines (An. arabiensis and An. coustani complex) was 4.4% (n = 34/770). Sporozoites were detected indoors and outdoors in captured anopheline mosquitoes. Of these CSP-positive species for Pv-210, Pv-247 and Pf, 41.1% (n = 14/34) were captured outdoors. A significantly higher proportion of sporozoite-infected mosquitoes were caught in index case households (5.6%, n = 8/141) compared to control households (1.1%, n = 2/181) (P = 0.02), and in neighboring households (5.3%, n = 24/448) compared to control households (P = 0.01). CONCLUSIONS: The findings of this study indicated that malaria index cases and their neighboring households had higher outdoor mosquito densities and Plasmodium infection rates. The study also highlighted a relatively higher outdoor mosquito density, which could increase the potential risk of outdoor malaria transmission and may play a role in residual malaria transmission. Thus, it is important to strengthen the implementation of vector control interventions, such as targeted indoor residual spraying, long-lasting insecticidal nets and other supplementary vector control measures such as larval source management and community engagement approaches. Furthermore, in low transmission settings, such as the Arjo Didessa Sugarcane Plantation, providing health education to local communities, enhanced environmental management and entomological surveillance, along with case detection and management by targeting of malaria index cases and their immediate neighboring households, could be important measures to control residual malaria transmission and achieve the targeted elimination goals.


Assuntos
Anopheles , Malária , Animais , Bovinos , Humanos , Mosquitos Vetores , Etiópia , Comportamento Alimentar , Esporozoítos , Controle de Mosquitos
9.
Mol Microbiol ; 121(3): 565-577, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38396332

RESUMO

Plasmodium sporozoites are the highly motile and invasive forms of the malaria parasite transmitted by mosquitoes. Sporozoites form within oocysts at the midgut wall of the mosquito, egress from oocysts and enter salivary glands prior to transmission. The GPI-anchored major surface protein, the circumsporozoite protein (CSP) is important for Plasmodium sporozoite formation, egress, migration and invasion. To visualize CSP, we previously generated full-length versions of CSP internally tagged with the green fluorescent protein, GFP. However, while these allowed for imaging of sporogony in oocysts, sporozoites failed to egress. Here, we explore different strategies to overcome this block in egress and obtain salivary gland resident sporozoites that express CSP-GFP. Replacing the N-terminal and repeat region with GFP did not allow sporozoite formation. Lowering expression of CSP-GFP at the endogenous locus allowed sporozoite formation but did not overcome egress block. Crossing of CSP-GFP expressing parasites that are blocked in egress with wild-type parasites yielded a small fraction of parasites that entered salivary glands and expressed various levels of CSP-GFP. Expressing CSP-GFP constructs from a silent chromosome region from promoters that are active only post salivary gland invasion yielded normal numbers of fluorescent salivary gland sporozoites, albeit with low levels of fluorescence. We also show that lowering CSP expression by 50% allowed egress from oocysts but not salivary gland entry. In conclusion, Plasmodium berghei parasites with normal CSP expression tolerate a certain level of CSP-GFP without disruption of oocyst egress and salivary gland invasion.


Assuntos
Anopheles , Esporozoítos , Animais , Esporozoítos/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Anopheles/parasitologia , Oocistos , Plasmodium berghei/genética , Plasmodium berghei/metabolismo
10.
ACS Infect Dis ; 10(4): 1116-1125, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38421807

RESUMO

The O-fucosylation of the thrombospondin type I repeat (TSR) domain is important for TSR-containing proteins' optimal folding and stability. However, the importance of Plasmodium O-fucosyltransferase 2 (POFut2) remains unclear due to two different reports. Here, we disrupted the POFut2 gene in Plasmodium berghei and demonstrated that POFut2 KO parasites develop normally in blood and mosquito stages but show reduced infectivity in mice. We found that the reduced infectivity of POFut2 KO sporozoites was due to a diminished level of TRAP that affected the parasite gliding motility and hepatocyte infectivity. Using all-atom MD simulation, we also hypothesize that O-fucosylation impacts the TSR domain's stability more than its heparin binding capacity.


Assuntos
Fucosiltransferases , Plasmodium berghei , Animais , Camundongos , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Plasmodium berghei/genética , Esporozoítos , Proteínas de Protozoários/metabolismo , Hepatócitos/parasitologia
11.
Exp Parasitol ; 259: 108712, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38336093

RESUMO

Chicken coccidiosis, which caused by Eimeria spp, is a parasitic protozoal disease. At present, control measures of this disease depend mainly on anticoccidial drugs and live vaccines. But these control strategies have drawbacks such as drug resistance and limitations in live vaccines production. Therefore, novel control approaches are urgently need to study to control this disease effectively. In this study, the function and characteristics of the pyrroline-5-carboxylate reductase of Eimeria tenella (EtPYCR) protein were preliminary analyzed. The transcription and translation level were analyzed by using qPCR and Western blot. The results showed that the mRNA transcription and translation levels of EtPYCR were higher in unsporulated oocysts (UO) and second generation merozoites (Mrz) than that in sporulated oocysts (SO) and sporozoites. Enzyme activity showed that the enzyme activity of EtPYCR was also higher in the UO and Mrz than that in the SO and sporozoites. Immunofluorescence localization showed EtPYCR was mainly located on the top of sporozoites and the whole cytoplasm and surface of Mrz. The secretion assay indicated that EtPYCR was secretion protein, but not from micronemes. Invasion inhibition assay showed that rabbit anti-rEtPYCR polyclonal antibodies can effectively inhibit sporozoite invasion of DF-1 cells. These results showed that EtPYCR possess several important roles that separate and distinct from its conversion 1-pyrroline-5-carboxylate (P5C) into proline and maybe involved in the host cell invasion and development of parasites in host cells.


Assuntos
Coccidiose , Eimeria tenella , Doenças das Aves Domésticas , Pirróis , Vacinas , Animais , Coelhos , Proteínas de Protozoários , Clonagem Molecular , Galinhas/parasitologia , Esporozoítos , Oocistos , Coccidiose/parasitologia , Oxirredutases/metabolismo , Doenças das Aves Domésticas/parasitologia
12.
Sci Rep ; 14(1): 2790, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38307966

RESUMO

Malaria sterile immunity has been reproducibly induced by immunization with Plasmodium radiation-attenuated sporozoites (RAS). Analyses of sera from RAS-immunized individuals allowed the identification of P. falciparum antigens, such as the circumsporozoite protein (CSP), the basis for the RTS, S and R21Matrix-M vaccines. Similar advances in P. vivax (Pv) vaccination have been elusive. We previously reported 42% (5/12) of sterile protection in malaria-unexposed, Duffy-positive (Fy +) volunteers immunized with PvRAS followed by a controlled human malaria infection (CHMI). Using a custom protein microarray displaying 515 Pv antigens, we found a significantly higher reactivity to PvCSP and one hypothetical protein (PVX_089630) in volunteers protected against P. vivax infection. In mock-vaccinated Fy + volunteers, a strong antibody response to CHMI was also observed. Although the Fy- volunteers immunized with non-irradiated Pv-infected mosquitoes (live sporozoites) did not develop malaria after CHMI, they recognized a high number of antigens, indicating the temporary presence of asexual parasites in peripheral blood. Together, our findings contribute to the understanding of the antibody response to P. vivax infection and allow the identification of novel parasite antigens as vaccine candidates.Trial registration: ClinicalTrials.gov number: NCT01082341.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária Vivax , Malária , Animais , Humanos , Plasmodium vivax , Esporozoítos , Formação de Anticorpos , Imunização , Vacinação , Malária/prevenção & controle , Malária Falciparum/parasitologia , Malária Vivax/parasitologia , Plasmodium falciparum
13.
Am J Trop Med Hyg ; 110(3): 444-447, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38350139

RESUMO

Anopheles darlingi is the primary malaria vector in the Amazon region and is highly susceptible to both Plasmodium vivax and Plasmodium falciparum parasites. Although anopheline mosquitoes may develop melanotic encapsulation in response to Plasmodium parasites, there is no record of An. darlingi exhibiting a melanization response to P. vivax, the main malaria parasite in the Americas. Here, we report the occurrence of P. vivax sporozoite melanization in An. darlingi mosquitoes.


Assuntos
Anopheles , Malária Vivax , Malária , Animais , Humanos , Plasmodium vivax , Anopheles/parasitologia , Esporozoítos , Mosquitos Vetores/parasitologia , Glândulas Salivares
14.
Sci Rep ; 14(1): 4851, 2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418588

RESUMO

Eimeria species serve as promising eukaryotic vaccine vectors. And that the location of heterologous antigens in the subcellular components of genetically modified Eimeria may determine the magnitude and type of immune responses. Therefore, our study aimed to target a heterologous fluorescent protein to the cell surface or microneme, two locations where are more effective in inducing protective immunity, of Eimeria tenella and E. acervulina sporozoites. We used an enhanced yellow fluorescent protein (EYFP) as a tagging biomarker, fusing variously with some localization or whole sequences of compartmental proteins for targeting. After acquiring stable transgenic Eimeria populations, we observed EYFP expressing in expected locations with certain strategies. That is, EYFP successfully localized to the surface when it was fused between signal peptides and mature products of surface antigen 1 (SAG1). Furthermore, EYFP was efficiently targeted to the apical end, an optimal location for secretory organelle known as the microneme, when fused to the C terminus of microneme protein 2. Unexpectedly, EYFP exhibited dominantly in the apical end with only weak expression on the surface of the transgenic sporozoites when the parasites were transfected with plasmid with EYFP fused between signal peptides and mature products of E. tenella SAG 13. These strategies worked in both E. tenella and E. acervulina, laying a solid foundation for studying E. tenella and E. acervulina-based live vaccines that can be further tailored to the inclusion of cargo immunogens from other pathogens.


Assuntos
Coccidiose , Eimeria , Parasitos , Doenças das Aves Domésticas , Animais , Coccidiose/parasitologia , Animais Geneticamente Modificados , Sinais Direcionadores de Proteínas , Esporozoítos/metabolismo , Galinhas/parasitologia
15.
Sci Rep ; 14(1): 2881, 2024 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-38311678

RESUMO

Radiation-attenuated sporozoite (RAS) vaccines can completely prevent blood stage Plasmodium infection by inducing liver-resident memory CD8+ T cells to target parasites in the liver. Such T cells can be induced by 'Prime-and-trap' vaccination, which here combines DNA priming against the P. yoelii circumsporozoite protein (CSP) with a subsequent intravenous (IV) dose of liver-homing RAS to "trap" the activated and expanding T cells in the liver. Prime-and-trap confers durable protection in mice, and efforts are underway to translate this vaccine strategy to the clinic. However, it is unclear whether the RAS trapping dose must be strictly administered by the IV route. Here we show that intradermal (ID) RAS administration can be as effective as IV administration if RAS are co-administrated with the glycolipid adjuvant 7DW8-5 in an ultra-low inoculation volume. In mice, the co-administration of RAS and 7DW8-5 in ultra-low ID volumes (2.5 µL) was completely protective and dose sparing compared to standard volumes (10-50 µL) and induced protective levels of CSP-specific CD8+ T cells in the liver. Our finding that adjuvants and ultra-low volumes are required for ID RAS efficacy may explain why prior reports about higher volumes of unadjuvanted ID RAS proved less effective than IV RAS. The ID route may offer significant translational advantages over the IV route and could improve sporozoite vaccine development.


Assuntos
Vacinas Antimaláricas , Malária , Camundongos , Animais , Esporozoítos , Linfócitos T CD8-Positivos , Glicolipídeos , Malária/parasitologia , Adjuvantes Imunológicos/farmacologia , Adjuvantes Farmacêuticos , Camundongos Endogâmicos BALB C
16.
PLoS Pathog ; 20(2): e1012008, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38354186

RESUMO

Leucine-rich repeat (LRR) proteins are commonly involved in innate immunity of animals and plants, including for pattern recognition of pathogen-derived elicitors. The Anopheles secreted LRR proteins APL1C and LRIM1 are required for malaria ookinete killing in conjunction with the complement-like TEP1 protein. However, the mechanism of parasite immune recognition by the mosquito remains unclear, although it is known that TEP1 lacks inherent binding specificity. Here, we find that APL1C and LRIM1 bind specifically to Plasmodium berghei ookinetes, even after depletion of TEP1 transcript and protein, consistent with a role for the LRR proteins in pathogen recognition. Moreover, APL1C does not bind to ookinetes of the human malaria parasite Plasmodium falciparum, and is not required for killing of this parasite, which correlates LRR binding specificity and immune protection. Most of the live P. berghei ookinetes that migrated into the extracellular space exposed to mosquito hemolymph, and almost all dead ookinetes, are bound by APL1C, thus associating LRR protein binding with parasite killing. We also find that APL1C binds to the surface of P. berghei sporozoites released from oocysts into the mosquito hemocoel and forms a potent barrier limiting salivary gland invasion and mosquito infectivity. Pathogen binding by APL1C provides the first functional explanation for the long-known requirement of APL1C for P. berghei ookinete killing in the mosquito midgut. We propose that secreted mosquito LRR proteins are required for pathogen discrimination and orientation of immune effector activity, potentially as functional counterparts of the immunoglobulin-based receptors used by vertebrates for antigen recognition.


Assuntos
Anopheles , Malária , Animais , Humanos , Proteínas de Repetições Ricas em Leucina , Anopheles/parasitologia , Esporozoítos/metabolismo , Proteínas/metabolismo , Plasmodium berghei/metabolismo
17.
Mol Cell Proteomics ; 23(3): 100736, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342407

RESUMO

The oocyst is a sporogonic stage of Plasmodium development that takes place in the mosquito midgut in about 2 weeks. The cyst is protected by a capsule of unknown composition, and little is known about oocyst biology. We carried out a proteomic analysis of oocyst samples isolated at early, mid, and late time points of development. Four biological replicates for each time point were analyzed, and almost 600 oocyst-specific candidates were identified. The analysis revealed that, in young oocysts, there is a strong activity of protein and DNA synthesis, whereas in mature oocysts, proteins involved in oocyst and sporozoite development, gliding motility, and invasion are mostly abundant. Among the proteins identified at early stages, 17 candidates are specific to young oocysts. Thirty-four candidates are common to oocyst and the merosome stages (sporozoite proteins excluded), sharing common features as replication and egress. Western blot and immunofluorescence analyses of selected candidates confirm the expression profile obtained by proteomic analysis.


Assuntos
Anopheles , Plasmodium , Animais , Oocistos/metabolismo , Proteômica , Esporozoítos/metabolismo , Proteínas de Protozoários/metabolismo
18.
Parasitol Int ; 100: 102856, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38199522

RESUMO

The Plasmodium life cycle involves differentiation into multiple morphologically distinct forms, a process regulated by developmental stage-specific gene expression. Histone proteins are involved in epigenetic regulation in eukaryotes, and the histone variant H3.3 plays a key role in the regulation of gene expression and maintenance of genomic integrity during embryonic development in mice. However, the function of H3.3 through multiple developmental stages in Plasmodium remains unknown. To examine the function of H3.3, h3.3-deficient mutants (Δh3.3) were generated in P. berghei. The deletion of h3.3 was not lethal in blood stage parasites, although it had a minor effect of the growth rate in blood stage; however, the in vitro ookinete conversion rate was significantly reduced, and the production of the degenerated form was increased. Regarding the mosquito stage development of Δh3.3, oocysts number was significantly reduced, and no sporozoite production was observed. The h3.3 gene complemented mutant have normal development in mosquito stage producing mature oocysts and salivary glands contained sporozoites, and interestingly, the majority of H3.3 protein was detected in female gametocytes. However, Δh3.3 male and female gametocyte production levels were comparable to the wild-type levels. Transcriptome analysis of Δh3.3 male and female gametocytes revealed the upregulation of several male-specific genes in female gametocytes, suggesting that H3.3 functions as a transcription repressor of male-specific genes to maintain sexual identity in female gametocytes. This study provides new insights into the molecular biology of histone variants H3.3 which plays a critical role on zygote-to-oocyst development in primitive unicellular eukaryotes.


Assuntos
Malária , Parasitos , Plasmodium , Doenças dos Roedores , Masculino , Feminino , Animais , Camundongos , Oocistos , Histonas/genética , Zigoto/metabolismo , Epigênese Genética , Esporozoítos/fisiologia , Malária/parasitologia , Plasmodium berghei/fisiologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
19.
Genomics ; 116(2): 110792, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38215860

RESUMO

Eimeria tenella is the main pathogen responsible for coccidiosis in chickens. The life cycle of E. tenella is, arguably, the least complex of all Coccidia, with only one host. However, it presents different developmental stages, either in the environment or in the host and either intracellular or extracellular. Its signaling and metabolic pathways change with its different developmental stages. Until now, little is known about the developmental regulation and transformation mechanisms of its life cycle. In this study, protein profiles from the five developmental stages, including unsporulated oocysts (USO), partially sporulated (7 h) oocysts (SO7h), sporulated oocysts (SO), sporozoites (S) and second-generation merozoites (M2), were harvested using the label-free quantitative proteomics approach. Then the differentially expressed proteins (DEPs) for these stages were identified. A total of 314, 432, 689, and 665 DEPs were identified from the comparison of SO7h vs USO, SO vs SO7h, S vs SO, and M2 vs S, respectively. By conducting weighted gene coexpression network analysis (WGCNA), six modules were dissected. Proteins in blue and brown modules were calculated to be significantly positively correlated with the E. tenella developmental stages of sporozoites (S) and second-generation merozoites (M2), respectively. In addition, hub proteins with high intra-module degree were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway enrichment analyses revealed that hub proteins in blue modules were involved in electron transport chain and oxidative phosphorylation. Hub proteins in the brown module were involved in RNA splicing. These findings provide new clues and ideas to enhance our fundamental understanding of the molecular mechanisms underlying parasite development.


Assuntos
Eimeria tenella , Animais , Eimeria tenella/genética , Proteômica , Galinhas/parasitologia , Oocistos/fisiologia , Esporozoítos/genética , Esporozoítos/metabolismo , Estágios do Ciclo de Vida
20.
Proc Biol Sci ; 291(2014): 20232097, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38166422

RESUMO

Host age variation is a striking source of heterogeneity that can shape the evolution and transmission dynamic of pathogens. Compared with vertebrate systems, our understanding of the impact of host age on invertebrate-pathogen interactions remains limited. We examined the influence of mosquito age on key life-history traits driving human malaria transmission. Females of Anopheles coluzzii, a major malaria vector, belonging to three age classes (4-, 8- and 12-day-old), were experimentally infected with Plasmodium falciparum field isolates. Our findings revealed reduced competence in 12-day-old mosquitoes, characterized by lower oocyst/sporozoite rates and intensities compared with younger mosquitoes. Despite shorter median longevities in older age classes, infected 12-day-old mosquitoes exhibited improved survival, suggesting that the infection might act as a fountain of youth for older mosquitoes specifically. The timing of sporozoite appearance in the salivary glands remained consistent across mosquito age classes, with an extrinsic incubation period of approximately 13 days. Integrating these results into an epidemiological model revealed a lower vectorial capacity for older mosquitoes compared with younger ones, albeit still substantial owing to extended longevity in the presence of infection. Considering age heterogeneity provides valuable insights for ecological and epidemiological studies, informing targeted control strategies to mitigate pathogen transmission.


Assuntos
Anopheles , Malária , Animais , Feminino , Adolescente , Humanos , Recém-Nascido , Virulência , Mosquitos Vetores , Plasmodium falciparum , Esporozoítos , Longevidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...